Hyperbinary Expansions and Stern Polynomials
نویسندگان
چکیده
منابع مشابه
Hyperbinary Expansions and Stern Polynomials
We introduce an infinite class of polynomial sequences at(n; z) with integer parameter t > 1, which reduce to the well-known Stern (diatomic) sequence when z = 1 and are (0, 1)-polynomials when t > 2. Using these polynomial sequences, we derive two different characterizations of all hyperbinary expansions of an integer n > 1. Furthermore, we study the polynomials at(n; z) as objects in their ow...
متن کاملFactors and Irreducibility of Generalized Stern Polynomials
We investigate an infinite class of polynomial sequences at(n; z) with integer parameter t 1, which reduce to the well-known Stern (diatomic) sequence when z = 1 and are (0, 1)-polynomials when t 2. These sequences are related to the theory of hyperbinary expansions. The main purpose of this paper is to obtain various irreducibility and factorization results, most of which involve cyclotomic po...
متن کاملOn expansions in orthogonal polynomials
A recently introduced fast algorithm for the computation of the first N terms in an expansion of an analytic function into ultraspherical polynomials consists of three steps: Firstly, each expansion coefficient is represented as a linear combination of derivatives; secondly, it is represented, using the Cauchy integral formula, as a contour integral of the function multiplied by a kernel; final...
متن کاملGeneralized Binomial Expansions and Bernoulli Polynomials
In this paper we investigate generalized binomial expansions that arise from two-dimensional sequences satisfying a broad generalization of the triangular recurrence for binomial coefficients. In particular, we present a new combinatorial formula for such sequences in terms of a ’shift by rank’ quasi-expansion based on ordered set partitions. As an application, we give a new proof of Dilcher’s ...
متن کاملExpansions of Chromatic Polynomials and Log-concavity
In this paper we present several results and open problems about logconcavity properties of sequences associated with graph colorings. Five polynomials intimately related to the chromatic polynomial of a graph are introduced and their zeros, combinatorial and log-concavity properties are studied. Four of these polynomials have never been considered before in the literature and some yield new ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2015
ISSN: 1077-8926
DOI: 10.37236/4822